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Elastic stability of DNA configurations. I. General theory

Irwin Tobias,1,* David Swigon,2,† and Bernard D. Coleman2,‡

1Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
2Department of Mechanics and Materials Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey 0

~Received 16 July 1999!

Results are presented in the theory of the elastic rod model for DNA, among which are criteria enabling one
to determine whether a calculated equilibrium configuration of a DNA segment is stable in the sense that it
gives a local minimum to the sum of the segment’s elastic energy and the potential of forces acting on it. The
derived stability criteria are applicable to plasmids and to linear segments subject to strong anchoring end
conditions. Their utility is illustrated with an example from the theory of configurations of the extranucleoso-
mal loop of a DNA miniplasmid in a mononucleosome, with emphasis placed on the influence that nicking and
ligation on one hand, and changes in the ratio of elastic coefficients on the other, have on the stability of
equilibrium configurations. In that example, the configurations studied are calculated using an extension of the
method of explicit solutions to cases in which the elastic rod modeling a DNA segment is considered impen-
etrable, and hence excluded volume effects and forces arising from self-contact are taken into account.

PACS number~s!: 87.10.1e, 46.70.Hg, 02.40.2k, 46.32.1x
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I. INTRODUCTION

In this paper we derive various necessary conditions
sufficient conditions for the elastic stability of equilibrium
configurations of DNA segments subject to the constra
that can arise from the presence of bound proteins and
topology of the segment. The results obtained hold in
theory of the commonly employed elastic rod model wh
treats a DNA segment as an inextensible rod with ela
properties characterized by two elastic constants, the flex
rigidity A and the torsional rigidityC. In that theory, the
configuration of a DNA segment is determined once o
knows the curveC representing the duplex axis and the de
sity DV of the excess twist~or ‘‘overtwisting’’ ! aboutC. The
total energyF of the segment is taken to be the sum of tw
terms. One term,G, is determined byC and accounts for the
elastic bending energy and the possible presence of
range forces having a potential depending onC. The other,
CT , is the twisting energy:

F5G1CT . ~1!

In conventional units,

CT5
C

2 E
0

L

DV~s!2ds, ~2!

with L the length of the segment ands the arc-length param
eter alongC. When long range forces are absent,G reduces to
the bending energy,CB , which is determined by the curva
ture k of C:

CB5
A

2 E
0

L

k~s!2ds. ~3!
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Excluded volume effects and the possibility that the segm
makes contact with itself are taken into account by treatin
DNA segment as an impenetrable rod with circular cro
section.

So as to give the reader an idea of the nature of our the
of stability, we now state several definitions and give a su
mary of our principal results. The precise meaning of so
of the terms employed in this Introduction will be clarifie
later in the paper.

An equilibrium configuration, i.e., a configuration fo
which the first variation ofF vanishes for variations in con
figuration compatible with the imposed constraints, is h
called stable if it gives a strict local minimum toF in the
class of configurations compatible with the constraints.~The
meaning of the term ‘‘strict local minimum’’ is discussed
Sec. II.! The imposed constraints include those that follo
from the assumption that the DNA segment, which we tr
as an impenetrable rod, either is a plasmid~i.e., a segment
that is closed in the sense that each of its two DNA stran
and henceC, forms a closed curve! or is subject to strong
anchoring end conditions.

There is a topological invariantDL, called excess link,
which is meaningful for plasmids but can be defined also
open segments~also called linear segments! that are subject
to strong anchoring end conditions. In both cases,DL is
related to the total excess twistDT of the segment and an
appropriately defined writheW by the relation

DL5W1DT, ~4!

which for plasmids is equivalent to a well-known result
Calugareanu@1# and White@2#. Of course,DT ~in turns! is
related as follows toDV ~in radians per unit length!:

DT5
1

2p E
0

L

DV ds. ~5!

The writheW, on the other hand, likeG in Eq. ~1!, is deter-
mined by the curveC. The fact thatF, which is minimized
747 ©2000 The American Physical Society
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by a stable configuration, andDL, which is preserved in
variations, each can be expressed as a sum of a term dep
ing only onC, and a term depending only onDV, plays an
important role in the derivation of stability criteria.

In our treatment of necessary conditions for stability,
follow up on ideas given in a paper of Le Bret@3# and con-
sider cases in which the configuration whose stability is
ing investigated is a member of a one-parameter familyE of
equilibrium configurations of segments that differ only
their values ofDL, a parameter that can be taken to va
continuously.~See the discussion at the beginning of S
III. ! We show that if the configuration is stable, then t
slope of the graph ofDL versusW for E is not negative.
Thus, the relationdDLE/dW>0, which we call theE con-
dition, is a necessary condition for stability.~This condition
was obtained in a different form by Le Bret@3# for the im-
portant special case of a protein-free plasmid without lo
range forces affectingG.!

An equilibrium configuration inE for which the excess
twist densityDV vanishes, remains an equilibrium config
ration when the segment is nicked, i.e., when one of the
DNA strands is severed, an operation that eliminates the
ment’s ability to support a torsional moment. We show th
if a configuration withDV[0, when considered a configu
ration of an intact segment, is stable, withdDLE/dW,1, it
does not remain stable after nicking. In other words, the
lation dDLE/dW>1, called here the n condition, is a nece
sary condition for an equilibrium configuration inE to be
stable both before and after nicking. In Sec. IV~in the dis-
cussion of Fig. 4!, we give an example of a case in whic
there are three values ofDL that give rise to equilibrium
configurations withDV[0 with all three stable~in fact, glo-
bally stable! while the segment remains intact, but such th
one becomes unstable and two remain stable when the
ment is nicked.

Since an equilibrium configuration of a segment is sta
only if the corresponding configuration of each of the su
segments is stable when subject to appropriate constra
one can obtain a strengthened form of theE condition, which
we call theu condition: In order for an equilibrium configu
ration of a segment of lengthL to be stable, it is necessar
that, for eachj between 0 andL, there holdsu(j)>0, where
u(j) is, by definition, the slope of the graph ofDL versusW
for the family of equilibrium configurations of the subse
ment for which 0<s<j, when the subsegment is subject
the strong anchoring end conditions that would be impo
on it if its complementary subsegment of lengthL2j were
held rigid.

The importance of theu condition lies in the fact tha
families of equilibrium configurations can contain configur
tions that obey theE condition but not theu condition, and
hence are unstable.~Examples in which such is the case a
given in the accompanying paper on supercoiled configu
tions of plasmids@4#, here referred to as ‘‘paper II.’’!

Another necessary condition for the stability of an eq
librium configuration is that the curveC, representing the
duplex axis, give a local minimum toG in the class of curves
that obey the same geometric and topological constra
and have the same writhe asC. We call this condition theW
condition.
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We show further that strengthened forms of theE condi-
tion and theW condition, taken together, yield a conditio
sufficient for stability, called the S condition, which we u
in the discussion of the example treated in Sec. IV.

Three of the necessary conditions for stability that
present, i.e., theE, n, andu conditions, relate the stability o
an equilibrium configuration to graphs ofDL versusW.
Hence, application of these conditions requires an effici
method of finding equilibrium configurations of specifie
DL and calculating their writhe.

When G5CB , exact closed form solutions of the equ
librium equations can be derived, and adjustment of integ
tion constants yields explicit representations for equilibriu
configurations compatible with the imposed constrai
@5–7#. In previous applications of such a procedure to DN
segments, attention was restricted to configurations free f
self-contact. We recently derived a generalization of the p
cedure to cases, such as the present, in which the cross
tions are circular and impenetrable; that ‘‘generaliz
method of explicit solutions’’ is used here to calculate t
configurations of DNA segments of a type called ‘‘extran
cleosomal loops’’~see, e.g., Sec. IV, Fig. 1, and Refs.@7#
and @8#!.

Adjustment of integration constants to obtain configu
tions with prescribedDL requires, by Eq.~4!, repeated cal-
culations ofW, which can be a delicate and time-consumi
matter. However, once the explicit expression forC is avail-
able, a closed form relation can be obtained for the integ
along C of the geometric torsion@7#, and it follows from
observations of Calugareanu@1# and Pohl@9# that W differs
from the torsion integral by an integer that we have fou
not difficult to evaluate. Thus, writhe calculations were no
major difficulty in the present research. In addition, there
now available an easily evaluated algebraic formula relat
the elastic energy of an equilibrium configuration directly
the integration constants@6#. Without the new explicit repre-
sentations of solutions and computational methods forW and
CB based on these representations, precise calculation
configurations and detailed analysis of their stability wou
be far more difficult to perform.

In earlier work on closed form solutions of the equilib
rium equations@6#, we have given examples of cases
which a nicked segment of DNA subject to strong anchor
end conditions can have two equilibrium configurations w
one stable and the other not~according to the present defin
tion of stability!. The conclusions about the stability o
nicked configurations made in Ref.@6# were reached using
criteria derived in this paper.

II. DEFINITIONS, ASSUMPTIONS, AND PRELIMINARY
RESULTS

As we remarked in the Introduction, in the present theo
the configurationZ of a segment of DNA of lengthL is
specified by giving~i! the space curveC traced out by the
duplex axis and~ii ! the excess twist densityDV as a function
of the distances alongC; DV is the difference between th
twist density in the present state and in the torsionally
laxed, stress-free state.

For a plasmid,C is a closed curve. It has been known f
some time that Eq.~4! holds for a plasmid, i.e., that the sum
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of the excess twistDT and the writheW is a constantDL
that is topological in the sense that it is the same for
configurations that the plasmid can attain, at fixed tempe
ture and chemical composition of the medium, without c
ting one or both of its two strands. This conclusion follow
from the now familiar theorem that, for a plasmid,L, the
Gauss linking number for a DNA strand and the duplex a
C, obeys the relation@1,2# L5W1T, in which T is the total
twist of the strand aboutC in the present configuration, an
W is the writhe ofC. If we write T0 for the value ofT when
the DNA segment is relaxed~i.e., stress-free!, put DL5L
2T0 , and note thatDT5T2T0 , then Eq.~4! is the same as
the relationL5W1T. AlthoughL is an integer and is inde
pendent of the temperature and chemical composition of
medium,T0 andDL are not.

There are several equivalent ways of defining thewrithe
of a closed curve~see, e.g., the exposition of White@10#!.
One way@11# is to average, over all orientations of a plan
the sum of the~signed! self-crossings in the projection of th
curve on the plane and setW equal to that average. A circle
or more generally, a plane curve that does not cross its
has zero writhe, and a flat figure eight has a writhe of m
nitude one.

There are important examples of open segments of DN
for which one can define a writheW and excess linkDL, in
such a way that Eq.~4! holds again withDL constant for an
appropriate class of deformations of the segment. This
be done when the location and the orientation of the b
pairs at each end of the~open! segment are specified. Such
segment is said to be subject tostrong anchoring end condi
tions; for it the endpoints of both the duplex axisC and the
two DNA strands, and also the tangents toC at its ends,
remain fixed during variations in configuration. One c
show that if one joins the ends ofC with a fixed curveC* ,
identifiesW in Eq. ~4! with the writhe of the closed curve
formed by C and C* , and again takesDT to be the total
excess twist of the segment, thenW1DT will remain con-
stant as the configuration of the segment is varied, provid
of course, that the deformation is not such thatC passes
throughC* . The constantDL will then depend on how the
curveC* is chosen.

The extranucleosomal loops of mononucleosomes~treated
in Ref. @7# and here in Sec. IV! are examples of open seg
ments for which there is precisely one natural choice forC* ,
and it is clear that, when that choice is made, the clas
admissible variations is such thatC does not crossC* @12#.

Since we are treating DNA segments as inextensible,
mogeneous, kinematically symmetric, intrinsically straig
elastic rods obeying the classical theory of Kirchhoff, t
elastic energyC of a segment is a sum,

C5CB1CT , ~6!

in which, by Eqs.~2! and~3!, the bending energyCB and the
twisting energyCT in units of A/L are

CB5
L

2 E
0

L

k~s!2ds, CT5
vL

2 E
0

L

DV~s!2ds, ~7!
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v5C/A. ~8!

Our treatment of equilibrium states and their stability
confined to DNA segments that either are closed or are o
and subject to strong anchoring end conditions. The the
we develop is sufficiently general to allow for the possibili
that a segment is subject to conservative forces that act a
its length, such as the long-range electrostatic forces that
arise from its interaction with itself or with stationary ob
jects. We assume, however, that the potentialP of such
forces is a function ofC alone and hence is independent
DV. We write F for the sum of the potentialP and the
elastic energyC:

F5F~Z!5G~C!1CT~DV!, G~C!5P~C!1CB~C!.
~9!

Our theory does not require the assumption that the s
ment be free from self-contact or from contact with statio
ary rigid bodies, but we do suppose that:~i! when such con-
tact occurs, changes in configuration do no work against
forces and moments exerted at a contact point,~ii ! the con-
tact forces are normal to the surface of the segment, and~iii !
the moment exerted at a contact point has no compon
along the tangent toC and hence does not affectDV(s).

We say that a configurationZ # characterizes a state o
mechanical equilibrium, or, for short, is anequilibrium con-
figuration, if d F, the first variation ofF, vanishes for every
variationdZ in configuration that isadmissiblein the sense
that it is compatible with the imposed constraints, includi
~in the case of an open segment of DNA! the strong anchor-
ing end conditions and~for both closed segments and ope
segments! the constraint that the topological properties of t
segment~among which are the knot type ofC and the value
of DL) be preserved.

The relation

dF50, ~10!

or, equivalently,

dG52dCT , ~11!

holds for each admissible variationdZ from an equilibrium
configurationZ #. Any variation fromZ # that does not alter
C and preservesDT is admissible, and for it Eq.~11! reduces
to d CT50. Hence, a familiar argument tells us that, for
equilibrium configuration,DV is constant along the segme
and the second of Eqs.~7! reduces to

CT52p2vDT 2. ~12!

Because it is easy to show that of all twist density functio
DV(s) with a given value ofDT, that for which DV(s)
52pDT /L minimizesCT , from this point on we shall con-
fine our attention to variations in configuration that keepDV
spatially uniform and therefore are such that

dCT54p2vDTd~DT !. ~13!

This restriction will have no effect on the theory of the st
bility of equilibrium.
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The requirement that each variation in configuration p
serveDL will be of particular importance in the treatment
the stability of equilibrium states given in the next section
the paper. For example, the variation inG(C ) due to a varia-
tion in C, which at first sight appears difficult to calcula
directly, can be evaluated for an equilibrium state by not
that Eqs.~11! and ~13! and the relation

dW1d~DT !50 ~14!

yield

dG524p2vDTd~DT !54p2vDTdW. ~15!

This last relation implies that, for an equilibrium configur
tion,

if dW50, then dCB52dP. ~16!

We consider two configurations to beequivalent if the
corresponding excess twist density functionsDV are the
same and the corresponding duplex axesC are congruent. For
example, all the configurations obtained by rotating a c
figuration of a closed segment in whichC is a true circle and
DV is constant alongC are equivalent~see also Ref.@13#
§IIIB !. Moreover, hypothetical traveling wave motions
which a closed segment attains equivalent equilibrium c
figurations of a ‘‘figure-eight’’ type are not unfamiliar in ro
theory ~see, e.g., Ref.@14#, Fig. 4!.

We call an equilibrium configurationZ # stableif F has a
strict local minimumat Z # in the sense thatZ # has a neigh-
borhood@15# N such thatF(Z).F(Z #) for eachZ in N
that is not equivalent toZ #, and can be reached fromZ # by
a homotopy ~i.e., an appropriately regular one-parame
family! of configurations that are compatible with the im
posed constraints.

This definition of stability, which requires thatF have a
strict local minimum, differs from an often used definitio
requiringF to have aglobal minimum. ~See, e.g., the pape
of Jülicher on supercoiled configurations of plasmids@16#.!
When global minimization is used to define stability, a co
figuration that is stable according to our definition may
only ‘‘metastable.’’ Global minimizers ofF are of impor-
tance in many subjects, among which are the theory of
poisomer distributions in miniplasmids with bound protei
~cf. @7#!. Our experience has indicated that conditions
local stability of the type we present here can facilitate
search for global minimizers ofF. For an open segment, th
answer to the question of whether a given local minimizer
F is a global minimizer depends in general upon the cho
of the curveC* employed to defineW andDL.

For an equilibrium configurationZ # to be stable it is
necessary, but not sufficient, that the second variation inF
be nonnegative for each small admissible variation fromZ #:

d2F5d2~G1CT!>0. ~17!

In the next section we shall use the apparatus assem
here to obtain useful conditions for the stability of equili
rium states.
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III. CONDITIONS FOR STABILITY

The topological invariantDL can be altered. In the cas
of a plasmid, the cutting and subsequent ligation of a sin
DNA strand can result in a change inDL by an integral
value that depends on the relative number of full rotatio
made in the plane of the cut before ligation. The correspo
ing process for an open DNA segment is rotation about
tangents at the ends and can result in nonintegral chang
DL. Nonintegral changes inDL can result also from
changes in the twist associated with the torsionally rela
DNA due, for example, to changes in temperature or solv
composition. Criteria to be derived here for stability of ca
culated configurations refer to virtual processes in whichDL
varies continuously with the elastic coefficientsA andC and
the potential energy functionP held fixed.

Let E be a smooth one-parameter family of equilibriu
configurations corresponding to values ofDL in an open
interval I which is sufficiently small that for eachDL in I
there is a uniqueZ, and hence a unique value ofW. Let J be
the interval of values ofW so obtained. The present discu
sion is confined to equilibrium familiesE for which one can
takeDL, DT, G, andF to be given by functions,DLE, DT E,
GE, FE, of W. With the exception of families that we sha
specify below, this can be done for allW in J other than
those that correspond to places where the graph ofW versus
DL for E has a turning point withdW/dDL50. ~A value of
W that is singular in this sense need not have a neighborh
in which DL is a single-valued function ofW.!

That there are exceptional families of equilibrium co
figurations for whichDL is not determined byW is a con-
sequence of the fact that a segment of DNA that is in eq
librium and is such thatC is a piece of a helix, an arc of a
circle, or a straight line remains in equilibrium wheneverDT
~and hence,DL) is changed withC ~and henceW! kept
constant. The most important of the exceptional families
equilibrium configurations, namely the circular configur
tions of a protein-free plasmid, will be discussed in paper
which deals with bifurcation diagrams for such plasmids.

Let Z # be the equilibrium configuration in the familyE
which gives a nonsingular valueW # to the writhe. For each
admissible variationdZ taking Z # into a configuration for
which the curveC equals the duplex axis of a configuratio
that is both inE and near toZ #, there holds

dG5FdGE

dW G
W5W #

dW, ~18!

d2G5Fd2GE

dW 2G
W5W #

~dW!2. ~19!

It follows from Eqs.~15! and ~18! that, along the familyE,
the derivative ofG with respect to the writhe ofC is, to
within the ~constant! factor 4p2v, the total excess twis
@17#:

dGE

dW 54p2vDT E. ~20!

Equations~19!, ~20!, and~4! yield
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d2G54p2vS dDLE

dW 21D ~dW!2. ~21!

Since we are considering variations that keep the exc
twist density uniform alongC, we have, by Eq.~13!,

d2CT54p2vd~DT!2, ~22!

and hence, by Eq.~21!,

d2F54p2v
dDLE

dW ~dW!2. ~23!

If the equilibrium configurationZ # is stable, the second
variation of F is nonnegative for each admissible variati
from that configuration. Thus, anecessary conditionfor Z #

to be stable is that at the point inE whereW5W #,

dDLE

dW >0. ~24!

This condition on a derivative alongE, called theE condi-
tion, is far from sufficient for stability. In paper II we prese
examples of configurations of plasmids that obey the con
tion, but for which there are admissible variations that v
late the following, also necessary, condition for an equil
rium configurationZ # to be stable:

If dZ is such thatdW50, then d2G>0. ~25!

That this, theW condition, is necessary for the stability o
Z # may be verified by using the relation~17! and noting that
d2CT50 for those admissible variationsdZ that leaveDV
the same and changeC without changingW.

The W condition, like theE condition, is not, by itself,
sufficient for stability. However, strengthened forms of t
two conditions can be combined in the following way
obtain a sufficient condition which we call theS condition:

Let Z # be in a family E of equilibrium configurations
such that~i! the curveC(Z #) corresponding toZ # has~in an
appropriate space of curves! a neighborhoodN with the
property that for eachZ* in E with writhe W * close to the
~nonsingular! writhe W # of Z #, there holds G(C )
.G„CE(Z* )… for everyC in N that has writheW * , is com-
patible with the boundary or closure conditions imposed
the segment, and is not congruent toC(Z* ), and ~ii ! the
relation ~24! holds with> replaced by..

When such is the case,F(Z).F(Z #) for each configu-
rationZ that is close but not equivalent toZ #, and henceZ #

is stable.
To prove the last assertion we letdZ be an admissible

variation takingZ # into a configurationZ which is not
equivalent toZ # but is such thatC(Z) is in N. We can
considerdZ to be the result of the successive application
two admissible variations, (dZ)1 and (dZ)2 , where (dZ)1 is
a variation of the type employed in the discussion contain
Eqs. ~18!–~23!, and (dZ)2 is a variation in whichDT ~and
henceW! is held fixed whileC changes in such a way tha
the configurationZ is attained. We then employ argumen
similar to others in this section to show that neither (dZ)1
nor (dZ)2 decreases the energyF.
ss
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-

n

f

g

To be specific: the variation (dZ)1 takesZ # into a con-
figurationZ1 for which the duplex axis,C1 , equals that of a
configuration inE near toZ # with writhe equal to the writhe
of C(Z). In view of Eq.~23!, the hypothesis~ii ! tells us that,
whenZ1 is not equivalent toZ #, the second variation inF
corresponding to (dZ)1 is positive, and hence

F~Z1!.F~Z #!. ~26!

Since the variation (dZ)2 does not changeW or DT, the
change it induces inF equals the change inG. In view of the
hypothesis~i!, C1 gives toG a strict minimum in the class o
all curves in N with writhe equal to that ofC(Z1), and
hence, whenZ is not equivalent toZ1 ,

F~Z!.F~Z1!. ~27!

As Z andZ # are not equivalent to each other, they cann
both be equivalent toZ1 . Thus, in view of Eqs.~26! and
~27!, F(Z).F(Z #) and the equilibrium configurationZ #

must be stable.
The utility of theu condition, which we now render pre

cise, is based on the fact that in order for an equilibriu
configuration of a segment to be stable, the correspond
configuration of each subsegment must be stable when
subsegment is subject to appropriate constraints.

We continue to take it for granted that the DNA segme
under consideration has the following properties:~i! the
curve C is smooth in the sense that the spatial positions
points onC and the tangent vectors toC are continuous func-
tions of the arc-length distances, and ~ii ! unless we state
otherwise~as in a discussion of nicked DNA!, the two DNA
strands are continuous structures. For a DNA segmentD that
is in a given equilibrium configurationZ # and is either
closed or subject to strong anchoring end conditions, we m
consider, for eachj with 0,j<L, the subsegmentDj of D
that corresponds to values ofs between 0 andj, and we may
imagine cases in whichDj is subject to the geometric con
straints ~including end conditions! and topological restric-
tions that would be imposed on it if its complementary su
segment~for which j<s<L) were held rigid. When the
complement ofDj is held rigid, the writheW(Zj) and the
excess linkDL(Zj) for a configurationZj of the subsegmen
Dj can be defined by settingW(Zj) equal toW(Z), and
DL(Zj) equal toDL(Z), whereZ is the configuration ofD.
Moreover, if Z is the equilibrium configurationZ #, then
Z j

# , the corresponding configuration ofDj , is an equilib-
rium configuration for the geometric constraints imposed
Dj , and each admissible variationdZj in the configuration
of Dj then corresponds to a unique admissible variationdZ
in the configuration ofD. @The constraints, including end
conditions, imposed onDj are a consequence of the smoot
ness assumptions~i! and~ii ! the fact that the configuration o
the ~rigid! complement ofDj is specified onceZ # is given.#
If Z # is stable, then, for eachj between 0 andL, Z j

# is stable
and hence obeys theE condition, which implies that the fol-
lowing assertion is true: For an equilibrium configurationZ #

of D to be stable it is necessary that theu condition hold, i.e.,
that for eachj with 0,j<L,

u~j!>0, ~28!
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where

u~j!5FdDLEj

dW G
W5W #

, ~29!

for the one-parameter familyEj of equilibrium configura-
tions of Dj that containsZ j

# as a nonsingular point.@In the
exceptional cases in whichj is such thatZ j

# corresponds to
a bifurcation point forDj , and hence the familyEj is not
unique,u(j) should be taken to be the minimum, over a
Ej , of the value of the right-hand side of Eq.~29!.#

It is clear that a configuration that obeys theu condition
also obeys theE condition. Although, for the examples o
families E that we present for miniplasmids in mononucle
somes in the final section of this paper, the configurati
that obey theE condition also obey theu condition, such is
not always the case. In a subsequent paper we shall show
there are branches of the bifurcation diagram for protein-f
miniplasmids that contain configurations at which the
equality, dDLE/dW.0, holds, but which are nonethele
unstable because they do not obey theu condition.

We say that a segment of DNA isnickedif one of its two
DNA strands has been severed. Once this has happenC
and DV can be varied independently, and the concepts
linking number and excess link are no longer applicab
Thus, we say that a variationdZ in the configuration of a
nicked segment isadmissibleif it is compatible with all the
constraints that would be imposed if the segment were
nicked, with the single exception of the constraint thatdZ
preserve the sum ofDT andW.

As in the case of a segment that is not nicked, a confi
ration Z # of a nicked segment is called anequilibrium con-
figuration if dF50 for each admissible variationdZ from
Z #. Because variations inC and DV for a nicked segmen
are independent, for an equilibrium configurationZ # of such
a segment,

DV~s!50 for all s. ~30!

It follows from this last relation and Eqs.~11! and~7! that in
order forZ # to be in equilibrium, it is not only necessary b
also sufficient that

dG50 ~31!

for each admissible variationdZ.
In general, in order forZ # to be stable, it is necessary th

d2F>0 for each admissible variation. For a nicked segme
in view of Eqs.~7! and~30!, it is clear that the stability of an
equilibrium configuration requires that

d2G>0. ~32!

In fact, asCT attains its minimum value whenDV[0, an
equilibrium stateZ # of a nicked segment is stable if an
only if G(C) has a strict local minimum atC #, in the sense
that G(C).G(C #) for all C corresponding to configuration
that are in a neighborhood ofZ # and are not equivalent to
Z #.

Let us now consider cases in which a familyE of equi-
librium configurations of an intact~i.e., not nicked! DNA
segmentD contains a configurationZ # with DT50 and
s

hat
e
-

,
f
.

ot

-

t,

henceDV(s)50. Equation~15! with DT50 then tells us
that Eq.~31! holds not only for all variations fromZ # that
are admissible forD, but also for all variations admissibl
for a segmentDn obtained by nickingD ~without changing
end conditions or closure properties!. ~This follows from the
fact that, because the curveC and the twist densityDV in Dn

can be varied independently, for each admissible variatio
the configuration ofDn there is another that gives rise to th
same change inC, but for which the change inDT equals the
negative of the change inW, and which is admissible no
only for Dn but also for D.! Thus, a configuration with
DV(s)50 would remain in equilibrium ifD were nicked.

If Z # is stable when considered a configuration ofD, it is
not necessarily true thatZ # is also stable as a configuratio
of Dn. For although, by Eqs.~17! and~22!, stability ofZ # as
a configuration ofD requires that, for all admissible varia
tions,

d2G>24p2v~dW!2, ~33!

stability of Z # as a configuration ofDn requires thatd2G
>0 for all such variations.

Now, Eqs.~18!–~21! hold for each variationdZ that is
admissible forD and takesZ # into a configuration that has
an axial curve equal to that of a nearby configuration inE. It
follows from Eq.~19! that whendZ is such thatdWÞ0 ~i.e.,
when, as we assume,W # is not a singular value ofW for the
family E!, the relationd2G>0 can hold fordZ only if

d2GE

dW 2 >0, ~34!

and, by Eq.~20! @or Eq.~21!#, we may conclude that in orde
for Z # to be a stable configuration ofDn it is necessary tha
the relation,

dDLE

dW >1 , ~35!

or, equivalently,

dDLE

dDT >0, ~36!

hold at the point inE where W5W #, i.e., whereDT
5DT E(W #). This condition, called then condition, tells us
that when the intact DNA segmentD is nicked, a stable
equilibrium configurationZ # in the family E with DT #50
will remain in equilibrium, but will lose its stability, if

0<
dDLE

dW ,1. ~37!

Using an argument analogous to the one that gave us
S condition for the stability of an intact segment, one c
prove the following assertion: If a familyE of equilibrium
configurations of an intact segment contains a configura
Z # with DT #50 and withW # nonsingular, and is such tha
~i! the curveC(Z #) has a neighborhoodN with the property
that, for each writheW* close toW #, CE(W* ) gives toG a
strict minimum in the class of all curvesC that are inN, have
writhe W* , and are compatible with the boundary or closu
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conditions imposed onD, and~ii ! the inequality~35! is strict,
then G(C).G(C #) for each such curveC not congruent to
C #, and henceZ # is stable and would remain stable if th
segmentD were nicked.

It follows from Eqs.~13! and ~20! that for a familyE of
equilibrium configurations of an intact segment there ho
the relation,

dFE

dDLE 54p2vDT E54p2v~DLE2W!, ~38!

which tells us how the graphs ofFE versusDLE andDLE

versusW determine each other.
If a point on the graph ofFE versusDLE happens to

correspond to a configurationZ # with DT #50, then that
point is a local minimum, a local maximum, or a point
horizontal inflexion. A necessary, but not sufficient, con
tion for the configurationZ # with DT #50 to be stable
when the segment is nicked is that the corresponding poin
the graph ofFE versusDLE be a local minimum.

A relation between free energy and average writhe an
gous to Eq.~38! holds even for segments with length su
that fluctuations in configuration cannot be neglected.~For
pertinent discussions of the statistical mechanics of prot
free DNA plasmids free from long range interactions, s
Refs.@18# and @19#.!

We close our discussion of the general theory with a r
for constructing a graph ofDLE versusW for a family E(v)
of equilibrium configurations of a DNA segment when o
has such a graph for the corresponding familyE(v* ) for a
segment that is subject to the same constraints, has the
value ofA, but has a different value ofC and hence ofv.

The first of Eq.~7! and the second of the Eq.~9! imply
that both sides of Eq.~20! are independent ofv, and hence

DT E~W,v,A!5
v*

v
DT E~W,v* ,A!, ~39!

i.e.,

DLE~W,v,A!5W1
v*

v
„DLE~W,v* ,A!2W…. ~40!

~As our notation indicates,DT E andDLE can be considered
functions ofW, v, andA. If long range interactions are ab
sent, i.e., ifP50, thenDT E andDLE are independent ofA.!
Equation~40! tells us that under a change inv, the vertical
distance of a point on the graph ofDLE versusW, from the
line DLE5W, scales asv21. Of course, the location of the
points that correspond to configurations withDT E50, i.e.,
the points where that graph crosses the lineDLE5W, is
independent of the assumed value ofv.

IV. MINIPLASMIDS IN MONONUCLEOSOMES

A. Method for calculating configurations

This section contains examples of calculated equilibri
configurations to which results presented above are ap
cable. The configurations are calculated using explicit so
tions obtained under the assumption that no external fo
act at a cross section, other than those that may arise
s

-

of

o-

n-
e

e

me

li-
-

es
m

contact of the cross section with others or with station
objects. Hence the potentialP is set equal to zero, we hav
G5CB , F5C, and the variational equation characterizin
an equilibrium configuration, i.e.,

dCB1dCT50, ~41!

is equivalent to the field equations of Kirchhoff’s theory
~inextensible and symmetric! rods:

dF

ds
50,

dM

ds
5F3t. ~42!

Here,t(s) is the unit tangent vector toC; F(s), the result of
the internal forces acting on the cross section under con
eration, is a reactive force not given by a constitutive re
tion; andM (s), the result of moments of the internal force
is given by a relation that, in the units employed for Eqs.~2!
and ~3!, can be written as

M5At3
dt

ds
1CDVt. ~43!

A DNA molecule is here approximated by a tube with circ
lar cross sections of diameterD. The numberd5D/L, like
v5A/C, is an important dimensionless parameter in o
theory. We assume that the contact forcef* ~i.e., the force
exerted on the cross section withs5s* by a cross section
with s5s** Þs* ) is a reactive force concentrated at th
point of contact that is normal to the surface of the tube
s5s* . Geometrical considerations yield

ux~s* !2x~s** !u5D, t~s* !•„x~s* !2x~s** !…50,
~44!

wherex(s) is the position in space of the point onC with
arc-length parameters. Because contact forces are assum
to be normal to the surface of the tube,

f* 5 f *
x~s* !2x~s** !

D
, ~45a!

F~s* 10!2F~s* 20!1f* 50,

M ~s* 10!2M ~s* 20!50. ~45b!

The relations~42! and~43! can be considered differentia
equations forx andDV. In our previous studies of the elast
rod model@5–7#, explicit solutions of these equations we
employed to calculate equilibrium configurations free fro
points of self-contact. In the present research we use a
eralization of the explicit solution method to cases in whi
self-contact occurs at isolated points. We make use of
fact that the configuration of each subsegment lying betw
two consecutive points of contact is given by an expli
solution that depends on six parameters which are relate
integration constants for the differential equations~42! and
~43!. These parameters determine, among other things,
excess twist densityDV ~which turns out to be constant ins!
and the moduli of elliptic functions and integrals occurring
expressions for the coordinates ofx(s). A segment withn
points of contact has 2n11 contact-free subsegments if it
open, or 2n if it is closed, and hence its configuration
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determined when 12n16 parameters are specified if it
open, or 12n if it is closed. The boundary conditions~or, in
the case of a protein-free plasmid, the closure conditio!
imposed on the segment, the geometric relations~44!, the
balance equations~45! for the forces and moments at th
points of self-contact, and the condition of preassignedDL
yield 12n16 ~or 12n) equations which are solved to calc
late the 12n16 ~or 12n) parameters. Once the paramete
are fixed, the reactive force vectorsF(s) and f(s* ) are de-
termined, and, in addition, the calculation of the elastic
ergy and the writhe is facilitated by use of expressions gi
in earlier work~@6#, Eqs.~17!–~19!, and@7#, Appendix B!.

For the present work on examples intended to be illus
tive of possible applications of the theory developed in S
II and III, we have setD520 nm. The calculations we repo
do not account for the effects of electrostatic repulsion.

B. Mononucleosomes

In a recent paper@7#, we presented calculations of con
figurations that minimize the elastic energy of miniplasm
in mononucleosomes with specified values of the plas
sizeN, the extentw of wrapping of DNA about the histone
core particle, the helical repeath0

b of the bound DNA, and
the linking numberL of the plasmid. There the emphasis w
placed on calculations of equilibrium topoisomer distrib
tions for miniplasmids in mononucleosomes and the res
obtained were for configurations free from self-contact. H
we present calculated graphs ofDL versusW andC versus
DL for the extranucleosomal loop, for a range ofDL in
which self-contact can occur.

A plasmid of lengthL or of sizeN in base pairs~bp! in a
mononucleosome is made up of~i! the nucleosomal DNA,
i.e., a bound segmentD b with duplex axisC b and lengthLb

which is in contact with the core particle, and~ii ! a ‘‘free’’
segmentD f ~the extranucleosomal loop! with duplex axisC f

and lengthL f5L2Lb. ~See Fig. 1.! The segmentD f can be
thought of as an open segment of DNA subject to stro
anchoring end conditions, that follow from the assumpt
that the duplex axisC, the tangent toC, and both DNA
strands are continuous at the places whereD f andD b meet.
We suppose thatD b is rigid with the curveC b being a left-
handed helix that, in accord with the structural informati
recently reported@20#, has a pitchp of 2.39 nm and a diam-
eterd of 8.36 nm.

For miniplasmids in mononucleosomes, values betw
1.4 and 1.8 have been observed for the wrapw, i.e., the

FIG. 1. Drawing of a DNA miniplasmid in a mononucleosom
with the core particle shown schematically as a cylinder. The r
tive lengths of the bound and free segments,D b and D f , corre-
spond to a miniplasmid of 359 base pairs that is wrapped abou
core particle for 1.7 turns. Here, as elsewhere in the paper, DN
depicted as a tube of diameter 20 Å.
s
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number of turns about the core particle made byD b @8#.
Expressions relatingw, p, d, andL to such end conditions fo
C f as the distance between the endpoints ofC f and the ori-
entation of the tangents toC f at those endpoints can be foun
in our recent paper@7#, where, in addition to calculating
equilibrium configurations for specified values ofN, w, and
L, we develop a multistate model in whichw is allowed to
fluctuate. Study of the model has suggested that, in princi
DNA-histone binding energy can be obtained from compa
sons of measured and calculated topoisomer distribution

So as to have specific examples of familiesE of equilib-
rium configurations with varyingDL but fixed end condi-
tions, we here putN5359 andw51.7. We take the exces
link DL of the free segmentD f to be defined by Eq.~4! with
W the writhe of the duplex axis of the miniplasmid~i.e., of
the closed curveC! and with DT equal to the total exces
twist DT f of D f . The curveC b plays the role ofC* , the
curve employed to close the open curve calledC in the dis-
cussion of the ways of definingDL for open segments sub
ject to strong anchoring end conditions@which appears in the
paragraph immediately preceding the one containing
~6!#. Here, that open curve isC f . With the present~and natu-
ral! choice ofC* and the present definition of the excess li
DL of D f , the integral valued linking number of the plasm
L, is

L5DL1T b1T 0
f , ~46!

whereT b is the total twist in the segmentD b, andT 0
f is the

total twist in D f when D f is in a torsionally relaxed state
with DV50.

In the calculations we report,A was set equal to 2.058
310212erg nm ~which corresponds to a persistence leng
A/RT of 50.0 nm atT5298 K; cf. @21#. For v5C/A we

-

he
is

FIG. 2. Equilibrium configurations of DNA miniplasmids in
mononucleosomes withN5359 bp,w51.7 turns, andW as listed
in the figure. In the configurations shown here,D f has one or more
points of self-contact. The corresponding values ofDL andC are
given in Table I forv51.4 and 0.7; see Figs. 4 and 5 for th
corresponding graphs ofDL versusW andC versusDL.
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employed two values: 1.4 and 0.7. The choicev51.4 is
compatible with the measurements of topoisomer distri
tion for miniplasmids @22#, and appears appropriate fo
physical applications of our calculations. The valuev50.7
is compatible with measurements of fluorescence polar
tion anisotropy of dyes intercalated in open segments
DNA with N>104 bp ~see@23#!; it is employed here to illus-
trate a way in which stability can be sensitive to the para
eterv. @That the value ofv can depend on the topology~and
perhaps size! of the segment under investigation is a mat
of current interest and concern; see, e.g.,@24#. At the very
least it suggests that one must be cautious in the interp
tion of quantitative results of calculations based on a the
in which a DNA segment is modeled as a homogeneous
obeying the special case of Kirchhoff’s constitutive relatio
in which the rod is assumed to be both inextensible a
axially symmetric.#

C. Results for C/A51.4

We suppose first thatv51.4. Whenv has that value,
each of the configurations seen in Figs. 2 and 3 give
global minimum to the elastic energy ofD f for a value of

FIG. 3. Equilibrium configurations of DNA miniplasmids i
mononucleosomes withN5359 bp, w51.7 turns, and withDL
such that the configuration would remain in equilibrium ifD f were
nicked.D f has one point of self-contact in E; it has none in C a
D.
-

a-
f

-

r

ta-
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,
d

a

DL that is listed in Table I and hence is not only an equil
rium configuration but also a stable configuration. The
configurations belong to a single one-parameter familyE(1.4)

of equilibrium configurations, whose members minimizeC
at fixedDL, and hence minimizeCB at fixedW ~in the class
of configurations ofD f compatible with the givenN andw!.
The solid curve in Fig. 4~a! is the graph ofDL versusW for
that family. Because each configuration in the family
stable, each obeys theE condition, and the slope of the grap
is positive. The configurations ofD f corresponding to points
on the graph between A1 and B1 are free from self-contact
for 1<n<4, the configurations corresponding to points b
tween An and An11 or between Bn and Bn11 haven points of
self-contact.~Our calculations show that when one point
self-contact is present, the contact force varies nearly line
with DL, increasing from 0 to 4.5 pN asDL decreases from
its value at A1 to its value at A2, and from 0 to 8.9 pN asDL
increases from its value at B1 to its value at B2.) As we see
in Fig. 4~a!, the graph ofDL versusW is continuous, and a
the places where the derivativedDL/dW suffers a jump~i.e.,
at the points An and Bn at which the number of self-contact
in D f increases!, the left-hand and right-hand derivative
agree in sign and are positive.

There is a reason why the graphs presented in Fig. 4
confined to values ofDL greater thanDL at A4 and less than
DL at B4. For DL in that range,D f has less than four self
contacts. Our numerical results strongly indicate that, forDL
outside of that range,D f has not only discrete points but als
regions of self-contact, and as a result, precise calculatio
C requires an extension of our present method that will
given in subsequent publications.

In Fig. 4~a!, there are three points, C, D, E, at which th
graph ofDL versusW intersects a line with a slope of 45
passing through the origin. These points correspond to c
figurations which, because they haveDT50, would remain
in equilibrium if D f were nicked. These three configuration
like all other configurations inE(1.4) , minimize CB in the
class of configurations that have the same writhe. The sl
TABLE I. Calculated values ofW, CB , DL, andC for the configurations shown in Figs. 2 and 3.

W
CB

@kcal/mol#

v51.4 v50.7

DL C
@kcal/mol#

DL C
@kcal/mol#

A4 23.006 15.31 23.443 17.33 23.880 19.36
A3 22.921 14.54 23.333 16.34 23.745 18.14
A2 22.551 11.66 22.890 12.88 23.228 14.09
A1 22.053 7.89 22.347 8.81 22.641 9.72
B1 20.456 9.69 20.560 9.81 20.664 9.92
B2 0.233 12.76 0.560 13.89 0.887 15.02
B3 0.708 16.31 1.109 18.01 1.511 19.72
B4 0.809 17.19 1.237 19.13 1.665 21.08

C 21.627 5.94 21.627 5.94 21.627 5.94
D 20.637 9.88 20.637 9.88 20.637 9.88
E 20.307 9.50 20.307 9.50 20.307 9.50

S 21.240 7.72 20.664 9.47
X 20.958 9.16 20.578 9.96
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FIG. 4. Graphs ofDL versusW, andC ver-
sus DL, for equilibrium configurations with
v51.4 and end conditions corresponding
N5359 bp andw51.7 turns. Here, as in Fig. 5
below, the symbols indicates that the configu
ration (An or Bn) is such that the number o
points of self-contact changes withDL, and n

indicates that the configuration~C, D, or E! is
such thatDT50. The dashed line in~a! is the
graph ofDL5W.
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dDL/dW of the solid curve in Fig. 4~a! exceeds 1 at C and
E and is less than 1 at D~i.e., then condition holds at C and
E but not at D!. Hence, even though each of these th
points corresponds to a stable configuration of the intact s
ment, if the segmentD f were nicked, the configuration a
point D would not be stable. Since the configurations
points C and E meet conditions~i! and ~ii ! given in the
paragraph that follows relation~37!, these two configurations
would be stable ifD f were nicked.

In Fig. 4~b!, we see that the graph ofC versusDL has a
global minimum at C, a local minimum at E, and a loc
maximum at point D that corresponds to an equilibrium co
figuration that loses stability when nicked.

Remark: In our previous paper on mononucleosomes@7#
we put v51.4 and considered the setS(N,w) of ~integer!
values of the linking numberL for which the configuration
of D f with minimum elastic energyC does not show self-
contact, and we remarked that preliminary calculations
strongly indicated that, for a range ofN in which C can be
identified with the free energyG of D f , whenL is not in
S(N,w) the configurations ofD f compatible withL have
elastic energies high enough to preclude the occurrence o
observable concentration of topoisomerL in an equilibrium
distribution of topoisomers in a mononucleosome with
specifiedN andw. Careful calculations of the type that gav
us Fig. 4~b! confirm the validity of this property ofS(N,w)
for v51.4, when 330,N,370 and 1.4,w,1.8.
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D. Results for C/A50.7

Once we have in hand the graph ofDL versusW shown
in Fig. 4~a! for E(1.4) , Eq. ~40! yields, forthwith, correspond-
ing graphs for familiesE(v) with other values ofv. Such a
graph for v50.7 is shown in Fig. 5~a!. For familiesE(v)

related in this way, the curveC corresponding to a given
value ofW is independent ofv, and the calculated configu
rations seen in Figs. 2 and 3 are appropriate to each s
family, with DL andC dependent onv in accord with Eqs.
~40! and~38!. As each configuration inE(1.4) minimizesCB

at fixedW, so also does each configuration inE(v) for arbi-
trary v.

Returning now to Fig. 5~a!, we note that as each configu
ration in E(0.7) is a minimizer ofCB at fixed W, we can
apply theScondition and assert that a configuration inE(0.7)

is stable if dDL/dW is strictly positive. The derivative
dDL/dW suffers a jump at points An and Bn. In the present
case, both the right-hand and left-hand derivatives are p
tive at A1, A2, A3, B2, and B3, and hence the configuration
corresponding to those points are stable. At B1, the left-hand
and right-hand derivatives do not agree in sign; at point
shown as a solid circle in Fig. 5, the derivativedDL/dW is
continuous but changes sign. As the branch traverses po
X and B1, the corresponding configurations either gain
lose stability; such points are called the points of excha
of stability. AsDL is here a~strictly! increasing function of
W between A4 and X and between B1 and B4, but is a de-
y
e

g
y

FIG. 5. Graphs ofDL versusW, andC ver-
sus DL, for equilibrium configurations with
v50.7, N5359 bp andw51.7 turns. The sym-
bol d indicates a point of exchange of stabilit
with dDL/dW continuous and equal to 0. Th
point B1 is a point of exchange of stability with
dDL/dW discontinuous. In~a!, the horizontal
lightface solid line with DL520.664 passes
through the point B1 and a point S correspondin
to a stable configuration with lower elastic energ
than B1.
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creasing function between X and B1, the configurations in
E(0.7) with W either between its values at A4 and X or be-
tween its values at B1 and B4 are stable, and those withW
between its values at X and B1 are unstable.

Our calculations show that there is a critical valuevc of v
such thatdDL/dW.0 for all values ofW between23.006
~W for A4) and 0.809~W for B4) when v.vc. For v
5vc, dDL/dW>0, and there is a~single! value of W
~namely20.606! at whichdDL/dW50 ~the corresponding
configuration is one for whichD f is without self-contact!.
For v,vc, there is at least one interval of values ofW in
which theE condition does not hold, and hence the cor
sponding configurations are unstable. The numbervc and the
values ofW that we have mentioned depend on the assum
values ofN andw. In the present case, in whichN5359 bp
andw51.7 turns,vc50.860.

The configuration corresponding to each labeled po
An,Bn,C,D,E,X,S, of the graph in Fig. 5~a! is shown in Fig.
2, 3, or 6. The corresponding values ofDL, C, andCB are
listed in Table I.~Of course,C andCB are the total elastic
energy and the total bending energy of the segmentD f

which, in the present case in whichN5359, has lengthL f

577.23 nm and therefore contains approximately 227 bp!
We now give a detailed analysis of some properties of

graphs shown in Fig. 5, not because they are immedia
relevant to experiment~at the present time the value of 0
for v is not expected to be appropriate for miniplasmids!, but
because they illustrate well certain possible consequence
a lack of monotonicity in a graph ofDL versusW for a

FIG. 6. Equilibrium configurations corresponding to points S,
and B1 of Fig. 5.
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segment subject to strong anchoring end conditions.
graph in Fig. 5~a! has a local maximum at point X~where
W520.958 andDL520.578) and a local minimum at B1

~whereW520.456 andDL520.664). For eachDL with
20.664,DL,20.578 there are three configurations
E(0.7) , two of which are stable withW either less than its
value at X or greater than its value at B1. For DL5
20.664, there are two configurations inE(0.7) : the unstable
configuration B1 and the stable configuration S. As Fig. 5~b!
and the last column in Table I show, for the configuration
which gives not only a local but also a global minimum toC
at fixed DL, C at S has a value approximately 0.45 kca
mole less than its value at B1. The configurations S, X, and
B1 are shown in Fig. 6. In the inset to Fig. 5~b!, an arrow
points to the place where the graph ofC versusDL crosses
itself. At that point,DL has a value~namely 20.608! for
which there are two configurations inE(0.7) with equal values
of C but distinct values ofW ~i.e., W †521.139 andW ‡

520.425). To each value ofW there corresponds a uniqu
configuration inE(0.7) , and ifW,W † or W.W ‡, then that
configuration not only is stable but gives a global minimu
to C in the class of all configurations with equalDL.

The rule that we employed to generate, from the graph
DL versusW for E(1.4) , corresponding graphs for familie
E(v) with different v is such that the value ofW for which
DL5W is independent ofv. Although the stability of con-
figurations of the intact segment corresponding to such
ues ofW can depend onv ~e.g., for the intact segment, th
configuration D is stable whenv51.4 but unstable when
v50.7), the stability of corresponding configurations
nicked segments~as it is governed by the dependence ofCB
on C! is independent ofv.
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