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Elastic stability of DNA configurations. I. General theory
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Results are presented in the theory of the elastic rod model for DNA, among which are criteria enabling one
to determine whether a calculated equilibrium configuration of a DNA segment is stable in the sense that it
gives a local minimum to the sum of the segment’s elastic energy and the potential of forces acting on it. The
derived stability criteria are applicable to plasmids and to linear segments subject to strong anchoring end
conditions. Their utility is illustrated with an example from the theory of configurations of the extranucleoso-
mal loop of a DNA miniplasmid in a mononucleosome, with emphasis placed on the influence that nicking and
ligation on one hand, and changes in the ratio of elastic coefficients on the other, have on the stability of
equilibrium configurations. In that example, the configurations studied are calculated using an extension of the
method of explicit solutions to cases in which the elastic rod modeling a DNA segment is considered impen-
etrable, and hence excluded volume effects and forces arising from self-contact are taken into account.

PACS numbsd(s): 87.10+€, 46.70.Hg, 02.40:k, 46.32:+x

I. INTRODUCTION Excluded volume effects and the possibility that the segment
makes contact with itself are taken into account by treating a
In this paper we derive various necessary conditions an®NA segment as an impenetrable rod with circular cross
sufficient conditions for the elastic stability of equilibrium section.
configurations of DNA segments subject to the constraints So as to give the reader an idea of the nature of our theory
that can arise from the presence of bound proteins and thef stability, we now state several definitions and give a sum-
topology of the segment. The results obtained hold in themary of our principal results. The precise meaning of some
theory of the commonly employed elastic rod model whichof the terms employed in this Introduction will be clarified
treats a DNA segment as an inextensible rod with elastidater in the paper.
properties characterized by two elastic constants, the flexural An equilibrium configuration, i.e., a configuration for
rigidity A and the torsional rigidityC. In that theory, the which the first variation ofb vanishes for variations in con-
configuration of a DNA segment is determined once ondiguration compatible with the imposed constraints, is here
knows the curve representing the duplex axis and the den-called stable if it gives a strict local minimum tb in the
sity AQ of the excess twigfor “overtwisting”) aboutC. The  class of configurations compatible with the constraififfie
total energy® of the segment is taken to be the sum of twomeaning of the term “strict local minimum” is discussed in
terms. One term[, is determined by’ and accounts for the Sec. Il) The imposed constraints include those that follow
elastic bending energy and the possible presence of lonfgom the assumption that the DNA segment, which we treat
range forces having a potential depending(riThe other, as an impenetrable rod, either is a plasrtid., a segment
V¥, is the twisting energy: that is closed in the sense that each of its two DNA strands,
and hence’, forms a closed curyeor is subject to strong
O=I+Vr. (1) anchoring end conditions.
. . There is a topological invariank £, called excess link
In conventional units, which is meaningful for plasmids but can be defined also for
open segment&lso called linear segmentthat are subject
C (L . " )
‘I’T:—f AQ(s)2ds, (2)  to strong anchoring end conditions. In both cask, is
2 Jo related to the total excess twidt7 of the segment and an

. appropriately defined writh®) by the relation
with L the length of the segment asdhe arc-length param-

eter alongC. When long range forces are absdntgduces to AL=W+AT, 4)
the bending energyz, which is determined by the curva-
ture k of C: which for plasmids is equivalent to a well-known result of

Calugareandil] and White[2]. Of course, A7 (in turng is

A (L i i '
‘PBZEJ x(s)2ds. 3) related as follows ta\() (in radians per unit lengih

0 1
AT= —f AQds. 5)

2 0
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by a stable configuration, andl£, which is preserved in  We show further that strengthened forms of theondi-
variations, each can be expressed as a sum of a term deperi@n and the)V condition, taken together, yield a condition
ing only on¢, and a term depending only ax(), plays an  Sufficient for stability, called the S condition, which we use
important role in the derivation of stability criteria. in the discussion of the example treated in Sec. IV.

In our treatment of necessary conditions for stability, we 1hre€ of the necessary conditions for stability that we
follow up on ideas given in a paper of Le Bii@] and con- present, i.e., th&, n, andé conditions, relate the stability of

sider cases in which the configuration whose stability is be?" eqwllbrlqm ponflguratlon to g_rgphs df/;. versus .
ing investigated is a member of a one-parameter famitf Hence, application of these conditions requires an efficient

equilibrium configurations of segments that differ only in method of finding equilibrium configurations of specified

their values ofAL, a parameter that can be taken to varyAE and calculating their writhe.

i v (See the di X t the bedinni fs WhenT'="g, exact closed form solutions of the equi-
continuously.(See 1€ discussion at the DeginIng ot S€Cqy 4, equations can be derived, and adjustment of integra-
[ll.) We show that if the configuration is stable, then the

_ i tion constants yields explicit representations for equilibrium
slope of the graph OﬁEL versus)V for E is not negative.  configurations compatible with the imposed constraints
Thus, the relatiordA £7/dW=0, which we call theE con- [5_7] | previous applications of such a procedure to DNA
dition, is a necessary condition for stabiliff’his condition  segments, attention was restricted to configurations free from
was obtained in a different form by Le Brd] for the im-  self-contact. We recently derived a generalization of the pro-
portant special case of a protein-free plasmid without longedure to cases, such as the present, in which the cross sec-
range forces affecting’.) tions are circular and impenetrable; that ‘“generalized
An equilibrium configuration inE for which the excess method of explicit solutions” is used here to calculate the
twist densityA() vanishes, remains an equilibrium configu- configurations of DNA segments of a type called “extranu-
ration when the segment is nicked, i.e., when one of the twaleosomal loops”(see, e.g., Sec. IV, Fig. 1, and Refg]
DNA strands is severed, an operation that eliminates the segnd[8]).
ment’s ability to support a torsional moment. We show that Adjustment of integration constants to obtain configura-
if a configuration withAQ =0, when considered a configu- tions with prescribed\ £ requires, by Eq(4), repeated cal-
ration of an intact segment, is stable, with £E/dW<1, it ~ culations of)¥, which can be a delicate and time-consuming

does not remain stable after nicking. In other words, the rematter. However, once the explicit expression fas avail-
lation dA £E/dW=1, called here the n condition, is a neces-able, a closed form relation can be obtained for the integral
sary condition for an equilibrium configuration & to be ~ along C of the geometric torsiori7], and it follows from
stable both before and after nicking. In Sec. (W the dis- Observations of Calugareaft]] and Pohl[9] that)V differs
cussion of Fig. % we give an example of a case in which from the torsion integral by an integer that we have found
there are three values &£ that give rise to equilibrium NOt difficult to evaluate. Thus, writhe calculations were not a
configurations witt\ Q=0 with all three stabléin fact, glo- ~ M&jor difficulty in the present research. In addition, there is
bally stable while the segment remains intact, but such that"oW available an easily evaluated algebraic formula relating

one becomes unstable and two remain stable when the se‘%—e elastic energy of an equilibrium configuration directly to
ment is nicked. the integration constanf§]. Without the new explicit repre-

Since an equilibrium configuration of a segment is stableSentations of solutions and computational methods/¥and
only if the corresponding configuration of each of the sub-Vs Pased on these representations, precise calculations of
segments is stable when subject to appropriate constraint%?nf'gurat'ons_ a_lnd detailed analysis of their stability would
one can obtain a strengthened form of Eheondition, which ~ P& far more difficult to perform. _ y
we call thed condition: In order for an equilibrium configu- N earlier work on closed form solutions of the equilib-
ration of a segment of length to be stable, it is necessary flum equations[6], we have given examples of cases in
that, for each between 0 and., there holds(¢£)=0, where which a n'|gked segment of DNA §gbj_ect to strong a}nchorllng
0(£) is, by definition, the slope of the graph AfC versusiy end conditions can have two equn_lbrlum conﬂguratlons_vv_|th
for the family of equilibrium configurations of the subseg- ON€ stable and the other n@ccording to the present defini-
ment for which G=s=<¢, when the subsegment is subject to t|9n of statyht;b. .The concIL_JS|ons about the stab|llty of
the strong anchoring end conditions that would be imposeficked configurations made in R¢6] were reached using
on it if its complementary subsegment of length ¢ were  Criteria derived in this paper.

held rigid.
The importance of the) condition lies in the fact that — 'reryniTiONS, ASSUMPTIONS, AND PRELIMINARY
families of equilibrium configurations can contain configura- RESULTS

tions that obey thd& condition but not thes condition, and

hence are unstabléExamples in which such is the case are  As we remarked in the Introduction, in the present theory

given in the accompanying paper on supercoiled configurathe configurationZ of a segment of DNA of length is

tions of plasmidg4], here referred to as “paper II)” specified by giving(i) the space curv€ traced out by the
Another necessary condition for the stability of an equi-duplex axis andii) the excess twist density() as a function

librium configuration is that the curvé, representing the of the distances alongC; AQ) is the difference between the

duplex axis, give a local minimum 0 in the class of curves twist density in the present state and in the torsionally re-

that obey the same geometric and topological constraintdaxed, stress-free state.

and have the same writhe &sWe call this condition théV For a plasmid( is a closed curve. It has been known for

condition. some time that Eq4) holds for a plasmid, i.e., that the sum
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of the excess twisf\7 and the writhelV is a constantA £ w=C/A. (8
that is topological in the sense that it is the same for all
configurations that the plasmid can attain, at fixed tempera- Our treatment of equilibrium states and their stability is
ture and chemical composition of the medium, without cut-confined to DNA segments that either are closed or are open
ting one or both of its two strands. This conclusion followsand subject to strong anchoring end conditions. The theory
from the now familiar theorem that, for a plasmid, the  we develop is sufficiently general to allow for the possibility
Gauss linking number for a DNA strand and the duplex axighat a segment is subject to conservative forces that act along
C, obeys the relatiofil,2] £L=W+7, in which Tis the total its length, such as the long-range electrostatic forces that can
twist of the strand about in the present configuration, and arise from its interaction with itself or with stationary ob-
W is the writhe ofC. If we write 7, for the value ofTwhen  jects. We assume, however, that the potenBabf such
the DNA segment is relaxef.e., stress-free put AL=L forces is a function of alone and hence is independent of
—75, and note thah 7=T7— 7, then Eq.(4) is the same as AQ. We write ® for the sum of the potentiaP and the
the relationf=W+ 7. Although £ is an integer and is inde- elastic energy¥:
pendent of the temperature and chemical composition of the
medium, 7, andA £ are not. P=0(2)=T(O)+¥:(AQ), T(C)=P(C)+W¥g(().

There are several equivalent ways of defining Wréhe
of a closed curvesee, e.g., the exposition of Whif&0]).
One way[11] is to average, over all orientations of a plane,
the sum of thesigned self-crossings in the projection of the
curve on the plane and sgf equal to that average. A circle,
or more generally, a plane curve that does not cross itsel

has zero writhe, and a flat figure eight has a writhe of MaGtact forces are normal to the surface of the segment(iand

nitude one. the moment exerted at a contact point has no component
There are important examples of open segments of DNA P P

for which one can define a writhd’ and excess linlA £, in along the tangent tG a’?d hehce#does not affeAtQ(s).

such a way that Eq4) holds again withA £ constant for an Wwe say that aco nfiguratiof cha_r acterizes a state of
appropriate class of deformations of the segment. This Camechqmca}l eqU|I|br|um, or, for_short, IS amq.umbnum con-
be done when the location and the orientation of the baséguratmn if 5@, the first variation ofP, vanishes for every

pals at each end ofHepen segment re specifed. Such a2 2/°" 22 1 Senfouaton et fadnissen e sense
segment is said to be subjectdtsong anchoring end condi- P P ’ 9

tions for it the endpoints of both the duplex ax@sand the .(m the case o'f.an open segment of DNie strong anchor-
two DNA strands, and also the tangentsGaat its ends, ing end conditions af“ﬁ'for both closed segments a_nd open
remain fixed during variations in configuration. One Cansegment)sthe constraint that the topological properties of the
show that if one joins the ends ¢&fwith a fixed curve C* segmentamong which are the knot type Gfand the value

identifies W in Eq. (4) with the writhe of the closed curve of #hﬁg rbeela[?ii)enserved.

formed by C and C*, and again taked7 to be the total

excess twist of the segment, th&vi+ A7 will remain con- SO=0 (10)

stant as the configuration of the segment is varied, provided, ’

of course, that the deformation is not such ti@apasses

throughC*. The constanA £ will then depend on how the

curveC* is chosen. oT=—6T,, (12)
The extranucleosomal loops of mononucleosofirested

in Ref. [7] and here in Sec. Ivare examples of open seg- holds for each admissible variatiot€ from an equilibrium

ments for which there is precisely one natural choicelfor  configurationZ*. Any variation from2* that does not alter

and it is clear that, when that choice is made, the class qf and preserved T'is admissible, and for it Eq11) reduces

admissible variations is such th@tdoes not cros€* [12]. to 5w, =0. Hence, a familiar argument tells us that, for an

Since we are treating DNA segments as inextensible, hoaquilibrium configurationAQ is constant along the segment
mogeneous, kinematically symmetric, intrinsically straight,ang the second of Eqé7) reduces to
elastic rods obeying the classical theory of Kirchhoff, the

elastic energyl of a segment is a sum, Vi=272wAT?. (12

9

Our theory does not require the assumption that the seg-
ment be free from self-contact or from contact with station-
ary rigid bodies, but we do suppose th@j:when such con-
tact occurs, changes in configuration do no work against the
brces and moments exerted at a contact pdintthe con-

or, equivalently,

V=Vg+V¥, (6) Because it is easy to show that of all twist density functions
AQ(s) with a given value ofA7, that for which AQ(s)

in which, by Eqs(2) and(3), the bending energ¥'s and the ~ =2mA7/L minimizesW¥, from this point on we shall con-
twisting energy¥ in units of A/L are fine our attention to variations in configuration that keep

spatially uniform and therefore are such that
L (L 5 wlL (L ) o
WB:EL x(s)%ds, «PT=7L AQ(s)%ds,  (7) oV =47 wATS(AT). (13

This restriction will have no effect on the theory of the sta-
with bility of equilibrium.
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The requirement that each variation in configuration pre- [ll. CONDITIONS FOR STABILITY
serveA £ will be of particular importance in the treatment of
the stability of equilibrium states given in the next section of
the paper. For example, the variationlifiC) due to a varia-
tion in C, which at first sight appears difficult to calculate
directly, can be evaluated for an equilibrium state by notin
that Egs.(11) and(13) and the relation

The topological invariant\ £ can be altered. In the case
of a plasmid, the cutting and subsequent ligation of a single
DNA strand can result in a change k. by an integral
value that depends on the relative number of full rotations
%made in the plane of the cut before ligation. The correspond-
ing process for an open DNA segment is rotation about the
tangents at the ends and can result in nonintegral changes in

SW+S(AT)=0 14 Ag Nonintegral changes iM\ £ can result also from
_ changes in the twist associated with the torsionally relaxed
yield DNA due, for example, to changes in temperature or solvent
composition. Criteria to be derived here for stability of cal-
Ol = — 412 wATS(AT) = 47?0 ATSW. (15  culated configurations refer to virtual processes in wiich

varies continuously with the elastic coefficiedtsnd C and
This last relation implies that, for an equilibrium configura- the potential energy functioR held fixed.
tion, Let E be a smooth one-parameter family of equilibrium
configurations corresponding to values & in an open
if SW=0, then s¥gz=—5P. (16) interval | which is sufficiently small that for eacA L in |
there is a uniqueZ, and hence a unique value . Let J be
We consider two configurations to teuivalentif the  (he interval of values o¥V so obtained. The present discus-
corresponding excess twist density functioh§ are the SIONIS confined to equmbrlum familie®s for_ WhlchEone can
same and the corresponding duplex aese congruent. For taé<eAé‘,, A7, T, and® to be given by functions) L7, ATF,
example, all the configurations obtained by rotating a cond » ®~ 0f W. With the exception of families that we shall

figuration of a closed segment in whictis a true circle and  SPeCify below, this can be done for all in J other than
AQ is constant along’ are equivalenisee also Ref[13]  those that correspond to places where the graptyoersus
8I1IB). Moreover, hypothetical traveling wave motions in A£ for E has a turning point withl)V/dA £=0. (A value of
which a closed segment attains equivalent equilibrium conYV thatis singular in this sense need not have a neighborhood
figurations of a “figure-eight” type are not unfamiliar in rod 1N Which AL is a single-valued function ofy.)
theory (see, e.g., Ref14], Fig. 4. _ Tha_t there are excep_ﬂonal fam|I|e_s of eqU|I_|br|um con-
We call an equilibrium configuratiog # stableif ® has a ~ figurations for whichA £ is not determined byV'is a con-
strict local minimumat Z* in the sense tha* has a neigh- Sequence of the fact that a segment of DNA that is in equi-
borhood[15] A such thatd(2)>d(Z*) for eachZ in A’ librium and is such thaf is a piece of a helix, an arc of a
that is not equivalent t&*, and can be reached fro&"* by circle, or a straight line remains in equilibrium whenewer
a homotopy (i.e., an appropriately regular one-parameter(@nd henceA[) is changed withC (and hencelV) kept
family) of configurations that are compatible with the im- constant. The most important of the exceptional families of
posed constraints. equilibrium configurations, namely the circular configura-
This definition of stability, which requires that have a  ions of a protein-free plasmid, will be discussed in paper I,
strict local minimum, differs from an often used definition Which de#als with bifurcation diagrams for such plasmids.
requiring® to have aglobal minimum. (See, e.g., the paper L&t Z” be the equilibrium conilguratlon in the famify
of Juicher on supercoiled configurations of plasm[ds].)  Which gives a nonsmgular.valueé 1o the writhe. For each
When global minimization is used to define stability, a con-a@dmissible variationsZ taking Z* into a configuration for
figuration that is stable according to our definition may beWwhich the curveC equals the guplex axis of a configuration
only “metastable.” Global minimizers ofb are of impor- ~ that is both inE and near toz”, there holds
tance in many subjects, among which are the theory of to-

poisomer distributions in miniplasmids with bound proteins S = ﬂj SW (18)
(cf. [7]). Our experience has indicated that conditions for daw — '

local stability of the type we present here can facilitate the

search for global minimizers @b. For an open segment, the 2rE

answer to the question of whether a given local minimizer of 521“:[_2} (W)2. (19
d is a global minimizer depends in general upon the choice dWe] e

of the curveC* employed to defingV and AL.

For an equilibrium configuratior2* to be stable it is It follows from Egs.(15) and(18) that, along the familyE,
necessary, but not sufficient, that the second variatio® in the derivative ofl" with respect to the writhe of is, to
be nonnegative for each small admissible variation f®fh within the (constank factor 47%w, the total excess twist

[17]:
5P =6*(T'+¥1)=0. 17
dre

= 42
In the next section we shall use the apparatus assembled dw At wAT". 20

here to obtain useful conditions for the stability of equilib-
rium states. Equations(19), (20), and(4) yield
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) ) E ) To be specific: the variationdg) , takesZ* into a con-

T =4m"w| — 5~ 1] (W)™ (21)  figuration 2, for which the duplex axis(;, equals that of a
configuration inE near toZ# with writhe equal to the writhe

Since we are considering variations that keep the exces¥ C(2). In view of Eq.(23), the hypothesisii) tells us that,

corresponding to §2), is positive, and hence

SV1=472ws(AT)?, (22)
D(Z2)>D(2%). (26)
and hence, by Eq21),
Since the variation §2), does not changeV or A7, the
5 , dAL 5 change it induces i® equals the change in. In view of the
Fe=4m"w aw (V)7 (23 hypothesig(i), C; gives toI a strict minimum in the class of
all curves in N with writhe equal to that of’(Z;), and
If the equilibrium configurationZ* is stable, the second hence, wherg is not equivalent toZ;,
variation of ® is nonnegative for each admissible variation
from that configuration. Thus, mecessary conditiofor Z* O(2)>D(Zy). (27)
to be stable is that at the point BwhereW=W#,

E

As Z and Z* are not equivalent to each other, they cannot

dACE both be equivalent t&;. Thus, in view of Egs(26) and
aw =0. 24 (27), d(2)>d(2%) and the equilibrium configuratio *
must be stable.
This condition on a derivative alon, called theE condi- The utility of the 6 condition, which we now render pre-

tion, is far from sufficient for stability. In paper Il we present Cise, is based on the fact that in order for an equilibrium
examples of configurations of plasmids that obey the condiconfiguration of a segment to be stable, the corresponding
tion, but for which there are admissible variations that vio-configuration of each subsegment must be stable when the

late the following, also necessary, condition for an equilib-subsegment is subject to appropriate constraints.
rium configurationZ* to be stable: We continue to take it for granted that the DNA segment

under consideration has the following propertié€s: the
If 5Z is such thats\W=0, then &°I'=0. (25 curve C is smooth in the sense that the spatial positions of
points onC and the tangent vectors gare continuous func-
That this, the)V condition is necessary for the stability of tions of the arc-length distancg and (ii) unless we state
Z* may be verified by using the relatigfh7) and noting that ~ otherwise(as in a discussion of nicked DNAthe two DNA
5°¥ =0 for those admissible variation$Z that leaveAQ strands are continuous structures. For a DNA segrihiat
the same and changewithout changing/V. is in a given equilibrium configuratior2* and is either
The W condition, like theE condition, is not, by itself, closed or subject to strong anchoring end conditions, we may
sufficient for stability. However, strengthened forms of theconsider, for eacls with 0<¢<L, the subsegmer®, of D
two conditions can be combined in the following way to that corresponds to values between 0 and, and we may
obtain a sufficient condition which we call tf& condition imagine cases in whic®; is subject to the geometric con-
Let Z# be in a family E of equilibrium configurations straints (including end conditionsand topological restric-
such that(i) the curveC(Z*) corresponding t&* has(in an  tions that would be imposed on it if its complementary sub-
appropriate space of curyea neighborhood\V with the  segment(for which é<s<L) were held rigid. When the
property that for eactZ* in E with writhe W* close to the complement ofD; is held rigid, the writhe\(Z,) and the
(nonsingulay writhe W# of Z# there holds I'(C) excess linkA L( Z,) for a configurationz, of the subsegment
>T'(CE(2*)) for everyC in N that has writhe/V*, is com- D, can be defined by setting(Z,) equal toW(Z2), and
patible with the boundary or closure conditions imposed omA L(Z,) equal toA L(Z), whereZ is the configuration oD.
the segment, and is not congruentdoz*), and (ii) the ~ Moreover, if Z is the equilibrium configuratiorz*, then
relation (24) holds with= replaced by>. Z’g, the corresponding configuration @1, is an equilib-
When such is the cas&(2)>®(2%) for each configu- rium configuration for the geometric constraints imposed on
ration Z that is close but not equivalent 7, and henceZ# D,, and each admissible variatiof£, in the configuration
is stable. of D, then corresponds to a unique admissible variatigh
To prove the last assertion we |62 be an admissible in the configuration ofD. [The constraints, including end
variation taking Z# into a configurationZ which is not  conditions, imposed o, are a consequence of the smooth-
equivalent toZ* but is such thatC(Z2) is in . We can ness assumptior(® and(ii) the fact that the configuration of
considerdéZ to be the result of the successive application ofthe (rigid) complement oD, is specified once* is given]
two admissible variations 82), and (52),, where 62),is  If Z#is stable, then, for eachbetween 0 andl, Z’:f is stable
a variation of the type employed in the discussion containingand hence obeys tHe condition, which implies that the fol-
Egs.(18)—(23), and (52), is a variation in whichA7 (and  lowing assertion is true: For an equilibrium configuratif
henceW) is held fixed whileC changes in such a way that of D to be stable it is necessary that #heondition hold, i.e.,
the configurationZ is attained. We then employ arguments that for each£ with 0<é<L,
similar to others in this section to show that neithéZf,
nor (6Z), decreases the energy. 0(£€)=0, (28



752 IRWIN TOBIAS, DAVID SWIGON, AND BERNARD D. COLEMAN PRE 61

where henceAQ(s)=0. Equation(15) with A7=0 then tells us
dA LE: that Eq.(31) holds not only for all variations frong* that

} ’ (29  are admissible foD, but also for all variations admissible
dw Wey # for a segmenD" obtained by nickingD (without changing

end conditions or closure propertjeéThis follows from the

for the one-parameter familf, of equilibrium configura-  fact that, because the curdeand the twist densitA() in D"
tions of D, that containsZ} as a nonsingular poinfin the  can be varied independently, for each admissible variation in
exceptional cases in whichis such thatZZf corresponds to  the configuration oD" there is another that gives rise to the
a bifurcation point forD,, and hence the familf; is not  same change i@, but for which the change iA 7 equals the
unique, 8(¢) should be taken to be the minimum, over all negative of the change i, and which is admissible not
E,, of the value of the right-hand side of E@9).] only for D" but also forD.) Thus, a configuration with

It is clear that a configuration that obeys theondition  AQ(s)=0 would remain in equilibrium ifD were nicked.
also obeys thé& condition. Although, for the examples of If Z#is stable when considered a configuratiorfpfit is
families E that we present for miniplasmids in mononucleo- not necessarily true thaf# is also stable as a configuration
somes in the final section of this paper, the configurationgf D", For although, by Eqg17) and(22), stability of Z# as
that obey theE condition also obey thé condition, such is a configuration ofD requires that, for all admissible varia-
not always the case. In a subsequent paper we shall show th#&ins,
there are branches of the bifurcation diagram for protein-free
miniplasmids that contain configurations at which the in- 8°T'=—4m’w(5W)?, (33
equality, dA £E/dw>0, holds, but which are nonetheless
unstable because they do not obey éheondition.

We say that a segment of DNA isckedif one of its two - .
DNA strands has been severed. Once this has happéned, NOW, Egs.(18)—(21) hold#fqr each variationsz that is
and AQ can be varied independently, and the concepts ofdmissible forD and takesZ™ into a configuration that has
linking number and excess link are no longer applicable@n @xial curve equal to that of a nearby configuratioirt
Thus, we say that a variatiodZ in the configuration of a ollows from Eq.(19) thgt_ whensZ is such thav)V+0 (i.e.,
nicked segment iadmissibleif it is compatible with all the ~When, as we assumgy s not a singular value ofy for the
constraints that would be imposed if the segment were nd@mily E), the relation5"I'=0 can hold for5z only if

0(§)=[

stability of Z# as a configuration of" requires thats’I"
=0 for all such variations.

nicked, with the single exception of the constraint that d2rE
preserve the sum &€ 7 andW. ——=0, (34
As in the case of a segment that is not nicked, a configu- dw

ration Z# of a nicked segment is called @quilibrium con-
figurationif & =0 for each admissible variatiodZ from
Z*. Because variations i@ and A() for a nicked segment

and, by Eq(20) [or Eq.(21)], we may conclude that in order
for Z# to be a stable configuration @" it is necessary that

are independent, for an equilibrium configurati®f of such the relation,
a segment, dACE L 35
2 L
AQ(s)=0 for all s. (30 dw
It follows from this last relation and Eqél1) and(7) that in or, equivalently,
order for Z# to be in equilibrium, it is not only necessary but dA LE
also sufficient that =0, (36)

dAT

or'=0 (31) hold at the point inE where W=W?#, ie., whereAT

for each admissible variatiofZ. =ATE(W#). This condition, called the condition, tells us
In general, in order fo * to be stable, it is necessary that that when the intact DNA segmer is nicked, a gtable
8°®=0 for each admissible variation. For a nicked segment&quilibrium configurationz™ in the family E with A7"=0
in view of Egs.(7) and(30), it is clear that the stability of an will remain in equilibrium, but will lose its stability, if
equilibrium configuration requires that

o dALE . 3

< .

5°T=0. (32 dw < (37)

In fact, asW attains its minimum value wheaA (=0, an Using an argument analogous to the one that gave us the

equilibrium stateZ# of a nicked segment is stable if and S condition for the stability of an intact segment, one can
only if I'(C) has a strict local minimum at#, in the sense prove the following assertion: If a famil of equilibrium
that I'(C)>T"(C*) for all C corresponding to configurations configurations of an intact segment contains a configuration
that are in a neighborhood &&* and are not equivalent to Z* with A7 #=0 and with)V * nonsingular, and is such that
z#, (i) the curveC(Z%) has a neighborhoot/ with the property

Let us now consider cases in which a famiyof equi-  that, for each writhéV* close towy #, CE(W*) gives tol a
librium configurations of an intacti.e., not nicked DNA strict minimum in the class of all curvesthat are in\, have
segmentD contains a configuratio2® with A7=0 and  writhe W*, and are compatible with the boundary or closure
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conditions imposed o®, and(ii) the inequality(35) is strict, ~ contact of the cross section with others or with stationary
thenT'(C)>T'(C*) for each such curv€ not congruent to objects. Hence the potentiRlis set equal to zero, we have
C*, and hencez?” is stable and would remain stable if the =¥y, ®=V¥, and the variational equation characterizing

segmentD were nicked. an equilibrium configuration, i.e.,
It follows from Egs.(13) and (20) that for a familyE of
equilibrium configurations of an intact segment there holds oWgt6Wr=0, (41)
the relation, is equivalent to the field equations of Kirchhoff's theory of
ddE (inextensible and symmetjicods:
ER—— P =472 E_
GALE A wATE=47°w(ALE-W), (39 dF M
E_ 0, E_FXL (42

which tells us how the graphs @€ versusA £F and A LE

versusyv c_jetermlne each other.E £ Here,t(s) is the unit tangent vector t6; F(s), the result of

If a point on the graph ,Oﬁ)# vc'arsusA#ﬁ happens 10 the internal forces acting on the cross section under consid-
correspond to a configuratiog™ with A77=0, then that gpation, is a reactive force not given by a constitutive rela-
point is & local minimum, a local maximum, or a point of {jon: andM(s), the result of moments of the internal forces,

horizontal inflexion. A necessary, but not sufficient, condi-jg given by a relation that, in the units employed for E@3.
tion for the configurationZ# with A7#=0 to be stable and(3), can be written as

when the segment is nicked is that the corresponding point of
the graph of®E versusA £F be a local minimum.
A relation between free energy and average writhe analo- M=Atx+CAOL (43
gous to Eq.(38) holds even for segments with length such
that fluctuations in configuration cannot be negleci®dr A DNA molecule is here approximated by a tube with circu-
pertinent discussions of the statistical mechanics of proteiniar cross sections of diametér. The numbed=D/L, like
free DNA plasmids free from long range interactions, seew=A/C, is an important dimensionless parameter in our
Refs.[18] and[19].) theory. We assume that the contact fofte(i.e., the force
We close our discussion of the general theory with a ruleaxerted on the cross section wig s* by a Ccross section
for constructing a graph ok £F versusW for a family E(,,  with s=s** #s*) is a reactive force concentrated at the
of equilibrium configurations of a DNA segment when onepoint of contact that is normal to the surface of the tube at

has such a graph for the corresponding fantily,«y for a  s=s*. Geometrical considerations yield
segment that is subject to the same constraints, has the same

value of A, but has a different value d& and hence of. [X(s*)=x(s**)[=D, t(s*)-(x(s*)—x(s**))=0,
The first of Eq.(7) and the second of the E¢Q) imply (44)

that both sides of Eq20) are independent ab, and hence wherex(s) is the position in space of the point @hwith

w* arc-length parametes. Because contact forces are assumed
ATEON, w,A)= FATE(W,w*,A), (399  to be normal to the surface of the tube,
X(s*)—x(s**
e oo XX (453
D
w*
ALEOWV, 0,A) =W+ 7(A,cE(w,w* A)—W). (40 F(s*+0)—F(s* —0)+f*=0,
M(s* +0)—M(s*—0)=0. (45b)

(As our notation indicates\7F andA £F can be considered

functions of W, w, andA. If long range interactions are ab-  The relationg42) and(43) can be considered differential
sent, i.e., ifP=0, thenA7* andA L are independent &%)  equations fox andA€). In our previous studies of the elastic
Equation(40) tells us that under a change i the vertical  yod model[5-7], explicit solutions of these equations were
distance of a point on the graph AfC® versus)V, from the  employed to calculate equilibrium configurations free from
line ACE=W), scales aw~*. Of course, the location of the points of self-contact. In the present research we use a gen-
points that correspond to configurations W7 ==0, i.e.,  eralization of the explicit solution method to cases in which
the points where that graph crosses the M=)V, is  self-contact occurs at isolated points. We make use of the

independent of the assumed valueadf fact that the configuration of each subsegment lying between
two consecutive points of contact is given by an explicit
IV. MINIPLASMIDS IN MONONUCLEOSOMES solution that depends on six parameters which are related to

integration constants for the differential equatiqdg) and

(43). These parameters determine, among other things, the
This section contains examples of calculated equilibriumexcess twist densitt() (which turns out to be constant &

configurations to which results presented above are appland the moduli of elliptic functions and integrals occurring in

cable. The configurations are calculated using explicit soluexpressions for the coordinates x(fs). A segment withn

tions obtained under the assumption that no external forcggoints of contact hasr?+ 1 contact-free subsegments if it is

act at a cross section, other than those that may arise frowpen, or 21 if it is closed, and hence its configuration is

A. Method for calculating configurations
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FIG. 1. Drawing of a DNA miniplasmid in a mononucleosome,
with the core particle shown schematically as a cylinder. The rela-
tive lengths of the bound and free segmer®® and D, corre-
spond to a miniplasmid of 359 base pairs that is wrapped about the B! B2
core particle for 1.7 turns. Here, as elsewhere in the paper, DNA is
depicted as a tube of diameter 20 A.

determined when I2+6 parameters are specified if it is

open, or 12 if it is closed. The boundary conditiorsr, in

the case of a protein-free plasmid, the closure conditions

imposed on the segment, the geometric relatigh®, the

balance equation§45) for the forces and moments at the

points of self-contact, and the condition of preassigneti

yield 12n+6 (or 12n) equations which are solved to calcu-  FIG. 2. Equilibrium configurations of DNA miniplasmids in

late the 12+6 (or 12n) parameters. Once the parametersmononucleosomes witN=359 bp,w=1.7 turns, and/ as listed

are fixed, the reactive force vectdfgs) andf(s*) are de- in the figure. In the configurations shown hefef has one or more

termined, and, in addition, the calculation of the elastic enpoints of self-contact. The corresponding values\af and ¥ are

ergy and the writhe is facilitated by use of expressions giver§iven in Table | foro=1.4 and 0.7; see Figs. 4 and 5 for the

in earlier work([6], Egs.(17)—(19), and[7], Appendix B. corresponding graphs &£ versusWV and¥ versusA L.

For the present work on examples intended to be illustra-

tive of possible applications of the theory developed in Sechumber of turmns about the core particle made By [8].

Il and I1l, we have seD =20 nm. The calculations we report Expressions relating, p, d, andL to such end conditions for

do not account for the effects of electrostatic repulsion. ~ C' as the distance between the endpoints band the ori-

entation of the tangents ' at those endpoints can be found

B. Mononucleosomes in our recent papef7], where, in addition to calculating

) equilibrium configurations for specified values Nf w, and
In a recent papef7], we presented calculations of con- / "\ve develop a multistate model in whiehis allowed to

figurations that minimize the elastic energy of miniplasmidsyctyate. Study of the model has suggested that, in principle,
ir_1 mononucleosomes with §pecified values of the_plasmichA_histone binding energy can be obtained from compari-
sizeN, the extentw of wrapping of DNA about the histone  sons of measured and calculated topoisomer distributions.
core particle, the helical repebf of the bound DNA, and So as to have specific examples of familesf equilib-
the linking numbelL of the plasmid. There the emphasis wasriym configurations with varying\ £ but fixed end condi-
placed on calculations of equilibrium topoisomer distribu-tijons, we here pulN =359 andw=1.7. We take the excess
tions for miniplasmids in mononucleosomes and the result§nk A £ of the free segmer ' to be defined by Eq(4) with
obtained were for configurations free from self-contact. Herg) the writhe of the duplex axis of the miniplasmiie., of

we present calculated graphs ®L versus)V and¥ versus  the closed curve®) and with A7 equal to the total excess
AL for the extranucleosomal loop, for a range &L in  twist A7T of Df. The curvec® plays the role ofC*, the
which self-contact can occur. _ _ curve employed to close the open curve calleih the dis-

A plasmid of lengthL or of sizeN in base pairgbp) ina  cyssion of the ways of defining £ for open segments sub-
mononucleosome is made up 6f the nucleosomal DNA, ject to strong anchoring end conditiofhich appears in the
i.e., a bound segmer® " with duplex axisC® and lengthL®  paragraph immediately preceding the one containing Eq.
which is in contact with the core particle, afié) a “free”  (g)]. Here, that open curve &'. With the presentand natu-
segmen® ' (the extranucleosomal lopmiith duplex axisC'  a)) choice ofc* and the present definition of the excess link

and lengthL'=L—L". (See Fig. 1. The segmenD ' canbe A/ of D', the integral valued linking number of the plasmid
thought of as an open segment of DNA subject to strong: s

anchoring end conditions, that follow from the assumption

that the duplex axi<, the tangent toC, and both DNA L=AL+ Tb+T{,, (46)

strands are continuous at the places whefeand D ® meet.

We suppose thab? is rigid with the curveC® being a left-  where7 ® is the total twist in the segme®®, and7{ is the

handed helix that, in accord with the structural informationtotal twist in D" when D is in a torsionally relaxed state

recently reported20], has a pitctp of 2.39 nm and a diam- with AQ=0.

eterd of 8.36 nm. In the calculations we reporf was set equal to 2.058
For miniplasmids in mononucleosomes, values betweerk 10 *?2erg nm (which corresponds to a persistence length

1.4 and 1.8 have been observed for the wvapi.e., the A/RT of 50.0 nm atT=298K; cf. [21]. For o=C/A we

w -0.456 0.233 0.708 0.809
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C D E AL that is listed in Table | and hence is not only an equilib-
rium configuration but also a stable configuration. These
configurations belong to a single one-parameter faisjlyy

of equilibrium configurations, whose members minimi¥e

at fixedA £, and hence minimiz& at fixedW (in the class

of configurations ofP f compatible with the giveN andw).
The solid curve in Fig. @) is the graph ofA £ versusW for
that family. Because each configuration in the family is
w -1.627 -0.637 -0.307 stable, each obeys tltecondition, and the slope of the graph

FIG. 3. Equilibrium configurations of DNA miniplasmids in is positive. The configulrations @' corresponding to points
mononucleosomes withi=359 bp, w=1.7 turns, and withA £ on the graph between*fand B are free from self-contact;

such that the configuration would remain in equilibriunDif were ~ for 1=n=4, the configurations corresponding to points be-

nicked.D ' has one point of self-contact in E; it has none in C andtween A" and A'*1 or between Band B'"* haven points of

D. self-contact.(Our calculations show that when one point of
self-contact is present, the contact force varies nearly linearly

employed two values: 1.4 and 0.7. The choise-1.4 is  With AL, increasing from 0 to 4.5 pN as. decreases from

compatible with the measurements of topoisomer distribuits value at A to its value at A, and from 0 to 8.9 pN a& £

tion for miniplasmids[22], and appears appropriate for increases from its value at'Bo its value at B.) As we see
physical applications of our calculations. The vale-0.7  in Fig. 4a), the graph ofA £ versus)V is continuous, and at

is compatible with measurements of fluorescence polarizathe places where the derivatide £/d)V suffers a jumgi.e.,

tion anisotropy of dyes intercalated in open segments ofit the points A and B' at which the number of self-contacts
DNA with N=10" bp (see[23)]); it is employed here to illus- in Df increases the left-hand and right-hand derivatives
trate a way in which stability can be sensitive to the paramagree in sign and are positive.

eterw. [That the value ofo can depend on the topologgnd There is a reason why the graphs presented in Fig. 4 are
perhaps sizeof the segment under investigation is a matterconfined to values of £ greater tham £ at A* and less than

of current interest and concern; see, e[4]. At the very AL at BY. For AL in that range D' has less than four self-
least it suggests that one must be cautious in the interpretgontacts. Our numerical results strongly indicate thatAfGr

tion of quantitative results of calculations based on a theoryutside of that rangel " has not only discrete points but also
in which a DNA segment is modeled as a homogeneous rotegions of self-contact, and as a result, precise calculation of
obeying the special case of Kirchhoff's constitutive relations,C requires an extension of our present method that will be

in which the rod is assumed to be both inextensible and@iven in subsequent publications.
axially symmetric] In Fig. 4(a), there are three points, C, D, E, at which the

graph of AL versus)V intersects a line with a slope of 45°
passing through the origin. These points correspond to con-
figurations which, because they haxg= 0, would remain

We suppose first thab=1.4. Wheno has that value, in equilibrium if Df were nicked. These three configurations,
each of the configurations seen in Figs. 2 and 3 gives #ke all other configurations irE; 4y, minimize ¥ in the
global minimum to the elastic energy @i for a value of class of configurations that have the same writhe. The slope

C. Results forC/A=1.4

TABLE |. Calculated values ofV, ¥, AL, andW for the configurations shown in Figs. 2 and 3.

w=14 w=0.7
Vg AL 4 AL N4
w [kcal/mol] [kcal/mol] [kcal/mol]
A4 —3.006 15.31 —3.443 17.33 —3.880 19.36
A3 —-2.921 14.54 —-3.333 16.34 —3.745 18.14
A? —2.551 11.66 —2.890 12.88 —3.228 14.09
Al —2.053 7.89 —-2.347 8.81 —2.641 9.72
B! —0.456 9.69 —0.560 9.81 —0.664 9.92
B? 0.233 12.76 0.560 13.89 0.887 15.02
B® 0.708 16.31 1.109 18.01 1.511 19.72
B* 0.809 17.19 1.237 19.13 1.665 21.08

Cc —1.627 5.94 —-1.627 5.94 —1.627 5.94
D —0.637 9.88 —0.637 9.88 —0.637 9.88
E —0.307 9.50 —0.307 9.50 —0.307 9.50
S
X

—1.240 7.72 —0.664 9.47
—0.958 9.16 —0.578 9.96
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(b)

20+

FIG. 4. Graphs ofA £ versus\V, and¥ ver-
sus AL, for equilibrium configurations with
w=1.4 and end conditions corresponding to
N=359 bp andw=1.7 turns. Here, as in Fig. 5
below, the symbolO indicates that the configu-
ration (A" or B") is such that the number of
points of self-contact changes withZ, and A
indicates that the configuratiofC, D, or B is
such thatA7=0. The dashed line ia) is the
graph of AL=W.

¥ [keal/mol]
o
1

AL

104

dA £/dW of the solid curve in Fig. @) exceeds 1 at C and D. Results for C/A=0.7

E and is less than 1 at D.e., then condition holds at C and Once we have in hand the graph®f. versusW/ shown

E but not at D. Hence, even though each of these thregp Fig. 4(a) for E(1.4, EQ.(40) yields, forthwith, correspond-
points corresponds to a stable configuration of the intact S€Qng graphs for families,,, with other values ofw. Such a
ment, if the segmenD ' were nicked, the configuration at graph for=0.7 is shown in Fig. &). For familiesE,,
point D would not be stable. Since the configurations ake|ated in this way, the curvé corresponding to a given
points C and E meet conditions) and (i) given in the  yajue of)V is independent ofs, and the calculated configu-
paragraph that follows relatiai37), these two configurations ations seen in Figs. 2 and 3 are appropriate to each such
would be stable ifD " were nicked. family, with AZ and¥ dependent om in accord with Egs.

In Fig. 4(b), we see that the graph df versusAL has & (40) and(38). As each configuration if; 4 minimizesW g
global minimum at C, a local minimum at E, and a local 4t fixed )V, so also does each configurationHg,, for arbi-
maximum at point D that corresponds to an equilibrium con+rgry ¢,
figuration that loses stability when nicked. Returning now to Fig. &), we note that as each configu-

Remark In our previous paper on mononucleosori€s  yation in E(o.7) is a minimizer of Wy at fixed W, we can
we putw=1.4 and considered the s8(N,w) of (intege)  apply theS condition and assert that a configuratiorEip -
values of the linking numbet for which the configuration s stable if dA£/dW is strictly positive. The derivative
of D" with minimum elastic energy’ does not show self- dA£/dW suffers a jump at points Aand B'. In the present
contact, and we remarked that preliminary calculations hadsse hoth the right-hand and left-hand derivatives are posi-
strongly indicated that, for a range bfin which W can be  {jye at AL A2 A3 B2 and B, and hence the configurations
identified with the free energg of D', when L is notin  corresponding to those points are stable. Atfe left-hand
S(N,w) the configurations o> compatible withZ have  anq right-hand derivatives do not agree in sign; at point X,
elastic energies high enough to preclude the occurrence of ajhown as a solid circle in Fig. 5, the derivatigd £/dW is
observable concentration of topoisom&in an equilibrium  continuous but changes sign. As the branch traverses points
distribution of topoisomers in a mononucleosome with thex and B!, the corresponding configurations either gain or
specifiedN andw. Careful calculations of the type that gave |ose stability; such points are called the points of exchange
us Fig. 4b) confirm the validity of this property oB(N,w)  of stability. ASA L is here a(strictly) increasing function of
for w=1.4, when 336cN<370 and 1.4w<1.8. W between A and X and between Band B, but is a de-

(a)

FIG. 5. Graphs ofA £ versusW, and V¥ ver-
sus AL, for equilibrium configurations with
0=0.7, N=359bp andw=1.7 turns. The sym-
bol @ indicates a point of exchange of stability
with dA£/dWW continuous and equal to 0. The
point B! is a point of exchange of stability with
dA £/dw discontinuous. In(a), the horizontal
lightface solid line with AC=—0.664 passes
through the point Band a point S corresponding
to a stable configuration with lower elastic energy
than B.

¥ [kcal/mol]

AL
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S X B' segment subject to strong anchoring end conditions. The
graph in Fig. %5a) has a local maximum at point Xvhere
W= —0.958 andA £=—0.578) and a local minimum at'B
(where W= —0.456 andA L= —0.664). For eachA £ with
—0.664<AL<—0.578 there are three configurations in
E0.7), two of which are stable withV either less than its
value at X or greater than its value at'.BFor AL=
—0.664, there are two configurations g 7): the unstable

w -1.240 -0.958 -0.456 configuration B and the stable configuration S. As Figbb
and the last column in Table | show, for the configuration S,
which gives not only a local but also a global minimunito

at fixed AL, ¥ at S has a value approximately 0.45 kcal/

creasing function between X and!,Bthe configurations in mlole less than its value at'BThe configurations S, X, and
E(0.7) With W either between its values att/mand X or be- B _are shown in Fig. 6. In the inset to Fig(B, an arrow
tween its values at Band B' are stable, and those withy ~ points to the place where the graphWfversusA £ crosses
between its values at X and'Bre unstable. itself. At that point,AL has a valughamely —0.608 for

Our calculations show that there is a critical valufeof @ Which there are two configurations iy, 7) with equal values
such thatdA £/dW=0 for all values ofV between—3.006  of ¥ but distinct values ofV (i.e., W'=—1.139 andW*
(W for A% and 0.809(W for B%) when w>w®. For o =—0.425). To each value dfV there corresponds a unique
=w° dAL/dW=0, and there is asinglg value of W  configuration inE 7, and ifW<WT or w>W*, then that
(namely —0.606 at whichdA £/dW=0 (the corresponding configuration not only is stable but gives a global minimum
configuration is one for whictD " is without self-contadt  to W in the class of all configurations with equal’.
For w<w®, there is at least one interval of values)dfin The rule that we employed to generate, from the graph of
which the E condition does not hold, and hence the corre-A £ versus)V for E(14), corresponding graphs for families
sponding configurations are unstable. The nunaifeand the E(,) with different w is such that the value ofV for which
values of)¥ that we have mentioned depend on the assumed - )y is independent ofo. Although the stability of con-
values ofN andw. In the present case, in whidh=359bp  figyrations of the intact segment corresponding to such val-
andw= 1.7 turns,w°=0.860. , _ues of W can depend om (e.g., for the intact segment, the

The configuration corresponding to each labeled pointeonfiguration D is stable whem=1.4 but unstable when
A",B",C,D,E XS, of the graph in Fig.(8) is shown in Fig.  ,—0.7) the stability of corresponding configurations of

2, 3, or 6. The corresponding values®f, W, andWg are  picked segmentéas it is governed by the dependencelo
listed in Table I1.(Of course,¥ and Wy are the total elastic C) is independent 0.

energy and the total bending energy of the segn®ht
which, in the present case in V\{h|¢{l1= 359,_ has length.f ACKNOWLEDGMENTS
=77.23nm and therefore contains approximately 227 bp.

We now give a detailed analysis of some properties of the This research was supported by the U.S. Public Health
graphs shown in Fig. 5, not because they are immediatel§ervice under Grant No. GM34809 and the National Science
relevant to experimenfat the present time the value of 0.7 Foundation under Grant No. DMS-97-05016. D.S. acknowl-
for w is not expected to be appropriate for miniplasnmjitbsit ~ edges support from the Program in Mathematics and Mo-
because they illustrate well certain possible consequences kEcular Biology at Florida State University, with funding
a lack of monotonicity in a graph oAL versusW for a  from the Burroughs Wellcome Fund Interfaces Program.

FIG. 6. Equilibrium configurations corresponding to points S, X,
and B' of Fig. 5.
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